Test z vysokoškolské matematiky – zadání

Pro ty z vás, kteří si troufnou na matematiku z vysoké školy, máme další test. Pokud jste matematiku na vysoké škole někdy měli, pokuste se vylovit zasuté vědomosti a s vervou do toho. Nebude to zas tak složité.

Každá otázka je za 1 bod, celkový počet bodů je 20.

1. Determinant je:
 a) neslušné slovo
 b) číslo pomocí kterého řešíme kvadratické rovnice
 c) číslo přiřazené čtvercové matici
 d) směrnice tečny

2. Hodnost matice

\[
\begin{pmatrix}
1 & 4 & -3 \\
0 & 2 & 7 \\
0 & 0 & 0
\end{pmatrix}
\]
je:
 a) 1
 b) 2
 c) 3
 d) 4

3. Soustava rovnic
\[
\begin{align*}
2x + 4y + z &= 13 \\
-y + 6z &= 16 \\
2z &= 6
\end{align*}
\]
 má řešení:
 a) \(x = 0, y = 0, z = 0\)
 b) \(x = 1, y = 2, z = 3\)
 c) \(x = 13, y = 16, z = 6\)
 d) \(x = 3, y = 3, z = 3\)

4. Soustava rovnic
\[
\begin{align*}
x - y + z &= 6 \\
x + y - 2z &= 3 \\
2x - 2y + 2z &= 12
\end{align*}
\]
 a) má jedno řešení
 b) nemá žádné řešení
 c) má nekonečně mnoho řešení
 d) nejedná se o soustavu rovnic

5. Soustava rovnic
\[
\begin{align*}
x + y + z &= 4 \\
2x + 2y + 2z &= 4 \\
x + y + 2z &= 8
\end{align*}
\]
 a) má jedno řešení
 b) nemá žádné řešení
 c) má nekonečně mnoho řešení
 d) nejedná se o soustavu rovnic
6. Součin matice $A = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 4 & 1 \\ 2 & 5 & 7 \end{pmatrix}$ a $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ je:

a) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

b) $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$

c) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

d) $\begin{pmatrix} 1 & 0 & 2 \\ 3 & 4 & 1 \\ 2 & 5 & 7 \end{pmatrix}$

7. $\lim_{x \to \infty} (x^2 - x) =$

a) $x - 1$

b) 7

c) ∞

d) 1

8. $\lim_{x \to \infty} 2^x =$

a) 2

b) 0

c) $-\infty$

d) ∞

9. $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x =$

a) e

b) f

c) g

d) h

10. $\lim_{x \to 3} (2x - 4) =$

a) 1
b) 2
c) 3
d) 4

11. Derivace funkce \(x^3 \) je:
 a) \(x^2 \)
b) \(3x \)
c) \(3x^2 \)
d) \(2x^3 \)

12. Derivace funkce \(2x^2 + x + 5 \) v bodě \(x = 2 \) je:
 a) 1
b) 2
c) 5
d) 9

13. Směrnice tečny k funkci \(\ln x \) v bodě \(x = 4 \) je:
 a) 0,25
b) 0,5
c) 1
d) 4

14. Úhel, který svírá tečna k funkci \(e^x \) v bodě \(x = 0 \) s osou \(x \) je:
 a) \(0^\circ \)
b) 45
c) 90\(^\circ\)
d) 180\(^\circ\)

15. Výsledkem \(\int 2x \, dx \) může být:
 a) 2
b) \(x^2 \)
c) \(2^x \)
d) 0

16. Výsledkem \(\int_1^3 (x+2) \, dx \) je:
 a) 2
b) 4
c) 6
d) 8

17. Objem tělesa, které vznikne rotací křivky \(y = x \) kolem osy \(x \) na intervalu \((0;2) \) je:
 a) \(\frac{8}{3} \pi \)
b) \(\frac{3}{8} \pi \)
c) \(2\pi \)
d) π

18. Řešení diferenciální rovnice $y' = y$ může být funkce:
 a) $y = x$
 b) $y = e^x$
 c) $y = 1$
 d) $y = x^2$

19. Součet nekonečné řady $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots$ je:
 a) věc zhola nemožná
 b) π
 c) e
 d) ∞

20. Rozhodněte, pro která $x \in \mathbb{R}$ je funkce $f(x) = x^3 - 6x^2 + 7x - 2$ konkávní:
 a) $(7; \infty)$
 b) $(\infty; 2)$
 c) $(15; 23)$
 d) nevím, ale dám si kávu

Výsledky:
1c, 2b, 3b, 4c, 5b, 6d, 7c, 8d, 9a, 10b, 11c, 12d, 13a, 14b, 15b, 16d, 17a, 18b, 19d, 20b